live chatMcAfee Secure sites help keep you safe from identity theft, credit card fraud, spyware, spam, viruses and online scams
Pass4Test 10%OFF Discount Code

Google Certified Professional Data Engineer Exam - Professional-Data-Engineer Exam Questions

QUESTION NO: 1
You are implementing several batch jobs that must be executed on a schedule. These jobs have many interdependent steps that must be executed in a specific order. Portions of the jobs involve executing shell scripts, running Hadoop jobs, and running queries in BigQuery. The jobs are expected to run for many minutes up to several hours. If the steps fail, they must be retried a fixed number of times. Which service should you use to manage the execution of these jobs?
Correct Answer: B
QUESTION NO: 2
You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?
Correct Answer: A
QUESTION NO: 3
Your organization has been collecting and analyzing data in Google BigQuery for 6 months. The majority of the data analyzed is placed in a time-partitioned table named events_partitioned. To reduce the cost of queries, your organization created a view called events, which queries only the last 14 days of data. The view is described in legacy SQL. Next month, existing applications will be connecting to BigQuery to read the events data via an ODBC connection. You need to ensure the applications can connect. Which two actions should you take? (Choose two.)
Correct Answer: C,D
QUESTION NO: 4
A data scientist has created a BigQuery ML model and asks you to create an ML pipeline to serve predictions.
You have a REST API application with the requirement to serve predictions for an individual user ID with latency under 100 milliseconds. You use the following query to generate predictions: SELECT predicted_label, user_id FROM ML.PREDICT (MODEL 'dataset.model', table user_features). How should you create the ML pipeline?
Correct Answer: B
QUESTION NO: 5
You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?
Correct Answer: A
QUESTION NO: 6
You've migrated a Hadoop job from an on-prem cluster to dataproc and GCS. Your Spark job is a complicated analytical workload that consists of many shuffing operations and initial data are parquet files (on average
200-400 MB size each). You see some degradation in performance after the migration to Dataproc, so you'd like to optimize for it. You need to keep in mind that your organization is very cost-sensitive, so you'd like to continue using Dataproc on preemptibles (with 2 non-preemptible workers only) for this workload.
What should you do?
Correct Answer: D
QUESTION NO: 7
The marketing team at your organization provides regular updates of a segment of your customer dataset. The marketing team has given you a CSV with 1 million records that must be updated in BigQuery. When you use the UPDATE statement in BigQuery, you receive a quotaExceeded error. What should you do?
Correct Answer: A
QUESTION NO: 8
Flowlogistic Case Study
Company Overview
Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.
Company Background
The company started as a regional trucking company, and then expanded into other logistics market. Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.
Solution Concept
Flowlogistic wants to implement two concepts using the cloud:
* Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads
* Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They also want to use predictive analytics to learn earlier when a shipment will be delayed.
Existing Technical Environment
Flowlogistic architecture resides in a single data center:
* Databases
* 8 physical servers in 2 clusters
* SQL Server - user data, inventory, static data
* 3 physical servers
* Cassandra - metadata, tracking messages
10 Kafka servers - tracking message aggregation and batch insert
* Application servers - customer front end, middleware for order/customs
* 60 virtual machines across 20 physical servers
* Tomcat - Java services
* Nginx - static content
* Batch servers
Storage appliances
* iSCSI for virtual machine (VM) hosts
* Fibre Channel storage area network (FC SAN) - SQL server storage
* Network-attached storage (NAS) image storage, logs, backups
* 10 Apache Hadoop /Spark servers
* Core Data Lake
* Data analysis workloads
* 20 miscellaneous servers
* Jenkins, monitoring, bastion hosts,
Business Requirements
* Build a reliable and reproducible environment with scaled panty of production.
* Aggregate data in a centralized Data Lake for analysis
* Use historical data to perform predictive analytics on future shipments
* Accurately track every shipment worldwide using proprietary technology
* Improve business agility and speed of innovation through rapid provisioning of new resources
* Analyze and optimize architecture for performance in the cloud
* Migrate fully to the cloud if all other requirements are met
Technical Requirements
* Handle both streaming and batch data
* Migrate existing Hadoop workloads
* Ensure architecture is scalable and elastic to meet the changing demands of the company.
* Use managed services whenever possible
* Encrypt data flight and at rest
* Connect a VPN between the production data center and cloud environment SEO Statement We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around.
We need to organize our information so we can more easily understand where our customers are and what they are shipping.
CTO Statement
IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO' s tracking technology.
CFO Statement
Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment.
Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?
Correct Answer: B
QUESTION NO: 9
You are designing storage for 20 TB of text files as part of deploying a data pipeline on Google Cloud. Your input data is in CSV format. You want to minimize the cost of querying aggregate values for multiple users who will query the data in Cloud Storage with multiple engines. Which storage service and schema design should you use?
Correct Answer: C
QUESTION NO: 10
You set up a streaming data insert into a Redis cluster via a Kafka cluster. Both clusters are running on Compute Engine instances. You need to encrypt data at rest with encryption keys that you can create, rotate, and destroy as needed. What should you do?
Correct Answer: A